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E↵ects of background periodic flow on MHD fast wave propagation to a coronal loop
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ABSTRACT

We investigate the propagation of MHD fast waves into a cylindrical coronal loop through an inho-
mogeneous stationary flow region. The background flow is assumed to have a small, spatially periodic
structure in addition to a constant speed. We focus on the absorption of the wave energy in Alfvén
resonance, comparing with the constant flow case. A new flow (absorption) regime is induced by the
periodic flow structure which enhances the absorption for the antiparallel flow and inverse absorption
(overreflection) for the parallel flow with respect to the axial wave vector, depending on the transitional
layer and flow profiles. A giant overreflection and anomalous absorption behavior arise for some flow
configurations. In the other flow regimes, its e↵ect on the absorption is shown to be weak.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves in solar atmo-
sphere have been intensively studied for their roles in
coronal heating and coronal seismology (Khomenko &
Collados 2015; Jess et al. 2015; Li et al. 2020; Van Doors-
selaere et al. 2020; Banerjee et al. 2021; Nakariakov et al.
2021). Coronal mass ejections (CMEs) and flares often
generate MHD fast waves that propagate in all direc-
tions (e.g., Goedbloed & Poedts 2004; Roberts 2019).
Due to this property, MHD fast mode can be a use-
ful tool for the global coronal seismology (Kwon et al.
2013). The fast waves generated by CME or flare can
excite loop oscillations whose property is crucially de-
pending on the topology of the loop location and the
wave source (Selwa & Ofman 2010; Selwa et al. 2011;
Mandal et al. 2021).
It has been observed that upflows have diverse prop-

erties in each local regions of the sun (Tian et al. 2021).
The presence of inhomogeneous flow may enhance the
complexity of the wave characteristics, e.g., a↵ecting the
wave propagation. An intriguing phenomenon is the
amplification of wave reflected from the strong veloc-
ity shear, so-called overreflection (see McKenzie 1970;
Joarder et al. 1997; Mann et al. 1999, and references
therein). The amplitude of the reflected wave becomes
larger than that of the incident wave. Overreflection
is related to the wave that changes its propagation di-
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rection (the sign of Doppler-shifted frequency) in the
flow region. It requires high velocity shear larger than
the phase speed of the wave. The wave with this prop-
erty is called negative energy wave (e.g., Cairns 1979;
Ryutova 1988; Joarder et al. 1997; Yu & Nakariakov
2020). Shear flow can also enhance or reduce the ef-
ficiency of resonant absorption or mode conversion if
the shear flow region includes resonance such as Alfvén
or slow resonance (Cśık et al. 1998, 2000; Kim & Kim
2022). MHD waves can be unstable near the region
with velocity shear and resonance (Tirry et al. 1998;
Andries et al. 2000). Cśık et al. (1998) theoretically
studied resonant absorption of MHD waves in Alfvén
and slow resonances where Alfvén and cusp speeds have
linear profiles in the inhomogeneous region whereas the
background flow has step-function profile therein. Their
numerical study showed a strong dependence of resonant
absorption and overreflection on flow speed. The wave
frequency is also an important factor for these resonance
phenomena (Cśık et al. 2000). In these cases, the wave
resonance is involved in overreflection, which needs to
be distinguished with the one caused by velocity shear
(jump) itself (Hollweg et al. 1990; Andries & Goossens
2001; Kim & Kim 2022).
Kim & Kim (2022) have recently generalized the

model of Cśık et al. (1998) by considering both plasma
density (Alfvén and cusp speeds) and flow speed spa-
tially vary in one direction. A giant overreflection was
obtained for some parameter ranges. They interpreted it
in terms of cavity-like resonance and the time-reversal-
invariant relationship derived in Rivero & Ge (2019).
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It was shown in Yu (2021) that resonant absorption of
the coronal loop kink oscillation in Alfvén resonance is
sensitively dependent on the configurations of the loop
and external background flow. In this study, a flow re-
gion with a constant flow speed was considered. It was
found that the flow region plays the role of potential
barrier or well depending on the flow speed. Yu (2021)
argued that the flow region may significantly a↵ect the
excitation of the loop oscillations.
This paper considers that the external background

flow has a periodic, continuous variation added to a con-
stant speed. We investigate the e↵ects of the external
periodic flows on the propagation of fast waves into an
overdense loop and its absorption in the Alfvén reso-
nances. The frequency of the incident wave is fixed to
that of fundamental kink mode of the loop oscillation.
Due to the periodic variation there appears new Alfvén
resonance in the flow region, which leads to overreflec-
tion phenomenon for su�ciently high flow speed. The
model and method are introduced in Sec. 2, which fol-
lowed by results in Sec. 3. We conclude the paper with
discussions in Sec. 4.

2. MODEL AND METHOD

As in Yu (2021), we consider the propagation of a
fast wave through an inhomogeneous flow medium to
a coronal loop in cylindrical geometry, for which ideal
MHD equations in cold limit is used to derive the gov-
erning wave equation. The coronal loop is assumed as
a straight and axisymmetric plasma column, which is
infinitely long in z direction with radial (r) dependence.
We assume no radial and azimuthal components for the
background magnetic field and flow: B = (0, 0, B0)
and U = (0, 0, U0(r)). The di↵erence from the previ-
ous study is the inclusion of periodic structure in U0(r)
(Eq. (3)). The linear wave equation for the total pres-
sure perturbation P can be described as (Goossens et
al. 1992; Yu 2021)
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A(r), v

2
A(r) = B

2
0/µ0⇢0(r), µ0 the magnetic

permeability, ! the wave frequency, kz the axial wave
number, and m the azimuthal wave number. The den-
sity of the coronal loops is assumed to be higher than
the outside and varies linearly from ⇢i to ⇢e in the tran-
sitional layer:

⇢0(r) =

8
>>><

>>>:

⇢i if r  R0 � l

⇢t(r) if R0 � l < r < R0 + l

⇢e if R0 + l  r  R

⇢s if r > R

, (2)

where R = R0 + l + Ru, R0 the loop radius, l the half
thickness of the transitional layer, and Ru the spatial
extent of the shear flow region. The density profile of
the transitional layer is given as ⇢t(r) = (⇢i � ⇢e)(R0 �
r)/2l + (⇢i + ⇢e)/2. The density in the wave source
region is given as ⇢s which is equal to ⇢i to satisfy the
condition that the wave generated at the source region is
a propagating mode, (!/kz)2 > v

2
As = B

2
0/(µ0⇢s), and

also to minimize the interference e↵ects caused by the
density di↵erence between ⇢s and ⇢i. The background
flow has a sinusoidal ripple structure outside the loop:

U0(r)=

8
><

>:

0 if r < R0 + l

Ue(r) if R0 + l  r  R

0 if r > R

, (3)

where Ue(r) = U(1 + a sin(2⇡b(r�R0 � l)/Ru)) and U ,
a(> 0), and b are constants.
We assume that a fast wave generated outside the

inhomogeneous flow region, which surrounds a coronal
loop (r > R), steadily (continuously) propagates to the
loop through the flow region. Our concern is the ab-
sorption behavior of the wave energy flux of the incident
fast wave through the resonance regions by comparing
the incident and scattered fast waves for r > R. Our
approach describes the steady state picture of the wave
propagation behavior including the wave absorption1.
In the source region (r > R) the incident and scat-

tered waves can be described by Bessel (Jm) and Hankel

(H(1)
m ) functions of first kind with the scattering coe�-

cient rm (Yu & Van Doorsselaere 2016; Yu 2021):

P (r,�)=
X

m

ame
im�

⇥
Jm[kr(r �R) + c]

+rm(R)H(1)
m [kr(r �R) + c]

⇤
, (4)

where kr(=
p
(!2/v2As)� k2z) is the radial wave number

for r > R, c is a constant equal to krR, and am is an m-
dependent constant describing the shape of the incident
wave. For a plane wave incidence to the x direction,
am = i

m (Stratton 2007). We assume that the generated
fast wave has only two kink modes (m = ±1). (Yu &
Van Doorsselaere 2016; Yu 2021). The value of a±1 is
unimportant here. The frequency of incident wave is set
equal to that of the fundamental standing kink wave,
! = !k(= kzB0

p
2/(⇢i + ⇢e)µ0), where kz = ⇡/L, L is

the loop length and vAi(e) = B0/
p
µ0⇢i(e).

1 It can be thought as large-time asymptotic state of the composite
system after a monochromatic cylindrical antenna (with ! = !k)
is placed in the source region. For comparing our theoretical
approach (IIM) with corresponding numerical simulation, see,
e.g., Kim et al. (2008) (cf., Fig. 9 therein) and Kim & Lee (2005)
.
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Figure 1. A profile of the potential �V = V/E as functions
of r/R0 and U/vAe when ! = !k, L/R0 = 50, �⇢(= ⇢i/⇢e) =
10, l/R0 = 0.5, Ru/R0 = 10, a = 0.3, and b = 10.

We apply the invariant imbedding method (IIM) (Kly-
atskin 2005; Yu & Van Doorsselaere 2016) to Eq. (1) and
Eq. (4), and then obtain a di↵erential equation for rm

(Yu & Van Doorsselaere 2016; Yu 2021):
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, (5)

where D1 = D(r > R), Jm = Jm(c), H(1)
m = H

(1)
m (c),

and prime means dz(y)/dy for z(y). The initial condi-
tions is rm(0) = 0. We integrate Eq. (5) from 0 to R to
calculate rm(r = R) (Yu & Van Doorsselaere 2016; Yu
2021).
When solving Eq. (5), to avoid the singularity due to

Alfvén resonance (D(r) = 0), we include a small collision
frequency in wave frequency: ! ! !+ i!i. To avoid the
other singularity which appears at r = 0 (Eq. (5)), we
set the plasma parameters at r/R0 = � to those for
r/R0 < � (Yu & Van Doorsselaere 2016; Yu 2021). The
values of the two parameters are chosen su�ciently small
to not a↵ect the results: !i = 10�8

s
�1 and � = 10�6.

From the scattering coe�cient rm we obtain the ab-
sorption coe�cient A 2 as (Yu & Van Doorsselaere 2016)

A = �
X

m=±1

Re(rm + |rm|2). (6)

2 When only focusing on the absorption of kink modes, the two
kink mode incidence and plane wave incidence have no di↵erence.
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Figure 2. Absorption coe�cient A vs. the flow speed U/vAe

when ! = !k, l/R0=0, �⇢=10, Ru/R0=20. From top to
bottom, L/R0=20, 50, and 100, and b changes from 0 to
20. Absorption and inverse absorption appear at regime III
(�V = 1). In each panel inset shows the absorption behavior
in detail.

We have previously shown in Yu (2021) that the po-
tential view is a useful tool to understand the results:

�V =
V

E
= 1�


(! � U0(r)kz)2

v
2
A(r)

� k
2
z

�
v
2
As

!2
. (7)
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Fig. 1 represents the potential �V for the flow model,
Eq. (3), as functions of r/R0 and U/vAe when �⇢(=
⇢i/⇢e)=10, l/R0=0.5, ! = !k, L/R0 = 50, Ru/R0=10,
a = 0.3, and b = 10. The previous potential view applies
well to the present model. The potential �V plays the
role of a potential barrier (�V > 1) or well (�V < 1),
but the symmetry with respect to U = vk(= !/kz)
is now broken due to the periodic ripple. Previously
we defined the critical speed Uc as U±c = vk ± vAe=(-
0.5736,1.4264)vAe for �V = 1 and divided the absorp-
tion behaviors into two regimes such that regime I is for
�V > 1 (U�c < U < U+c) and regime II is for �V < 1
(U < U�c and U > U+c) (Yu 2021). Due to the pe-
riodic variation of the background flow, there appear
new Alfvén resonances in the flow region where the flow
speed equals critical speed (�V = 1). We call this regime
III. It is not a point anymore. Its range is determined
by Ue = vk ± vAe. As a increases, the range of regime
III increases, reducing the range of the other regimes.
Contrary to the inside of the coronal loop, in flow re-
gion there is no constraint to trap the mode converted
(Alfvén/Alfvénic) waves in the Alfvén resonance, which
freely propagate along the field lines. The appearance
of multiple resonances may cause enhanced or decreased
absorption. The mode conversion or inverse mode con-
version occurs depending on the sign and magnitude of
the background flow. If the flow speed U is su�ciently
high, the inverse mode conversion could be strong to
have A < 0, so-called over-reflection. In this paper, we
call the case for A < 0 inverse absorption.

3. RESULTS

To compare with the previous results in Yu (2021), we
use the same parameters: ⇢e = 1.67353 ⇥ 10�12

kgm
�3,

B0 = 10�3
T , and R0 = 2 ⇥ 106m, and vAe =

689.569kms
�1 3. We first consider the case for the loop

with no transitional layer (l/R0 = 0). In Fig. 2 we plot
the absorption coe�cient A vs. the flow speed U/vAe

where ! = !k, �⇢ = 10, Ru/R0 = 20, and L/R0 is from
10 to 100. From top to bottom, L/R0 = 20, 50 and 100.
The result for b = 0 implies constant (non-periodic) flow.
The absorption appears in regime III (�V = 1), where its
range is proportional to a|U |. When U < 0 A is positive
while A is negative when U > 0. Notice that the range
of inverse absorption is larger than that of absorption.
For the case A > 0 (U < 0), A is sensitive to the value
of b, the number of periodicity, and gradually decreases
as L/R0 increases. The absorption pattern is similar
regardless of the value of L/R0. For the case A < 0,

3 The value of vAe was incorrectly presented in Yu (2021). The
contents do not change.

inverse absorption increases as b increases when L/R0

is small, whereas A has a maximum dip for a small b
when L/R0 is large. As L/R0 further increases from
100, |A| gradually decreases and its behavior is similar
to the case for L/R0 = 100.
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Figure 3. A vs. U/vAe for L/R0=20 (A, C, E), 100 (B,
D, F) with arbitrary a and b. The other parameters are the
same as in Fig. 2.

Fig. 3 presents A vs. U/vAe considering a dependence.
From the previous study (Yu 2021) we know that the ab-
sorption behavior is di↵erent depending on whether the
loop length is short or long. To compare these typical
cases, we choose L/R0 =20 (A, C, E) and 100 (B, D,
F) and see their dependence on a. We first see the right
side of U = 0 (U > 0). For L/R0 =20 the inverse ab-
sorption shows a crucial dependence on both a and b. It
reaches its maximum (local maximum dip) when a = 0.1
for b = 1. As b increases the value of a for the maximum
dip also increases. On the other hand, for L/R0 = 100,
its has its maximum when a is large regardless of b. An-
other di↵erence is that the inverse absorption is very
high for relatively short loops. Its value is unreasonably
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Figure 4. A vs. U/vAe for L/R0=20 with variation of
l/R0 and b. The other parameters are the same as in Fig. 2.
Each inset shows inverse absorption.

high as shown in panels C and E. Now we see the left
side (U < 0). For L/R0 = 100, max(A) is proportional
to a regardless of b and its pattern does not change when
b is su�ciently large (D and F). These behavior is sim-
ilar to L/R0 = 20 except that max(A) ⇡ 0.5 regardless
of b (insets in C, E). The value of a is important for high
absorption whereas b is for its complexity.
The presence of transitional layer changes the above

results. Fig. 4 shows A vs. U/vAe for L/R0 = 20 when
�⇢ = 10, Ru/R0 = 20, and a = 0.1. Form top to bot-
tom, l/R0 =0.01, 0.3, 0.5, and 1. Each inset indicates

0 0.5 1 1.5 2 2.5

0
0.1
0.2
0.3
0.4
0.5

A

b
 0
 1
 2
 5
 10
 20

l/R0=0.01, δρ=10, Ru/R0=20, L/R0=100, a=0.1

0 0.5 1 1.5 2 2.5

0

0.1

A

b
 0
 1
 2
 3
 10
 20

l/R0=0.3

0 0.5 1 1.5 2 2.5

0

0.1

A

b
 0
 1
 2
 5
 10
 15
 20

l/R0=0.7

0 0.5 1 1.5 2 2.5

0
0.1
0.2

A

U/vAe

b
 0
 1
 2
 10
 15
 20

l/R0=1

Figure 5. Similar to Fig. 4 except L/R0=100.

corresponding inverse absorption and its range. The in-
fluence of periodic structure is very small in regime I.
A small shift of the second peak to the left occurs (top
panel). The influence on absorption in regime II yields
reduction of it as l/R0 increases and its e↵ect is more
strong in the right side (U > 0). On the left side of
regime III, A is similar to the case of no transitional
layer when l/R0 is small. When l/R0 is close to 1, A is
enhanced than l/R0 = 0 case and shows more compli-
cate aspect depending on b. On the right side of regime
III (insets), A draws more complicate curves as l/R0

increases. The inverse absorption is also greatest when
l/R0 = 1 as for the absorption of the left side, exceeding
non-transitional layer case. The value of b correspond-
ing to the maximum dip depends on l/R0: b = 20 for
l/R0 = 0.01 and b = 5 for l/R0 = 1. The increase of
transitional layer enhances the interference e↵ect (see
the inset of the bottom panel).
Fig. 5 gives A vs. U/vAe for L/R0 = 100 when �⇢ =

10, Ru/R0 = 20, and a = 0.1. Form top to bottom,
l/R0 =0.01, 0.3, 0.7, and 1. The second absorption
peak in regime I shows small shift as for L/R0 = 20 and
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first peak near U = 0 does not have noticeable changes
since U and a are small. The absorption and inverse
absorption in regime III is not so high as for L/R0 =
20. In the left side regime A < 0.1 and in the right
side regime |A| < 0.5. The inverse absorption tends
to increases as l/R0. It is noteworthy that the inverse
absorption has a maximum at small b for small l/R0:
b = 1 for l/R0 =0.01, 0.3. On the other hand, for large
l/R0, large b is needed: b = 20 for l/R0 = 0.7 and b=13
for l/R0 = 1.
Now we consider a dependence of A in the presence

of the transitional layer. Fig. 6 describes A vs. U/vAe

by varying a from 0 (b = 0 case) to 0.5 with 0.1 in-
crement, for b = 1, 5, 10, 20 when L/R0 = 100. From
the left column l/R0 = 0.01, 0.7, 1. When l/R0 = 0.01
(left column: (a)-(j)), the absorption in regime I has
little changes. While the first absorption peak near
U/vAe = 0 almost does not change its shape and po-
sition, the second peak shifts to the left with a small
variation as a increases. The value of b has no signifi-
cant e↵ect on A in this regime. On the other hand, for
the inverse absorption in regime III, A is enhanced in
proportion to a, but its shape nearly does not change
when b > 5. The proportional relationship is also ob-
tained for b = 1 in top panels: (a)-(c). It is interesting
that a position of absorption dip at U/vAe ⇡ 1.425 for
l/R0 = 0.01 and a = 0.5 diverges into two points when
l/R0 = 0.7, then converges into one point again when
l/R0 = 1. Considering panel (c), the dip position is
varying with a, which is very di↵erent form panel (a).
This kind of behavior may be due to the cavity-like res-
onance in the presence of mode conversion and inverse
mode conversion (e.g. Kim & Kim 2022). The strong
a dependence of inverse absorption for b = 1 also im-
plies that the local profile of flow or exactly the form of
d⌦(r)/dr near the resonance point is crucial for the in-
verse mode conversion, alongside with the density profile
of the transitional layer.
The strong interference e↵ect of two opposite reso-

nances is magnificent when l/R0 and b are su�ciently
large. It is shown in the rest panels ((e), (f), (h), (i), (k),
(l)) that a new absorption regime arises in the inverse
absorption regime (the right side of regime III) as a in-
creases. We call this anomalous absorption. Comparing
with the left side of regime III and with Fig. 3 it is clear
that the presence of two opposite resonances is essential
for this complicate absorption behavior.
The above trend of A changes when the loop length

is short. We show the results for L/R0 = 20 in Fig. 7.
For b = 1 case (top panels: (a)-(c)), A has similarity
regardless of l/R0: it has a maximum dip when a = 0.1,
which decreases as a increases. Below the top panels

the inverse absorption has strong dependence on a for
each b. It is remarkable that when (j) b = 20 and a =
0.3, A shows a giant overreflection, reaching ⇠ �107.
On the other hand, the absorption behavior in regime
I for l/R0 = 0.01 (the left column: (a)-(j)) is similar
to that of Fig. 6 (see the inset of panel (a) in Fig. 7).
The increment of transitional layer rapidly reduces the
inverse absorption, although it is still strong.
In general, inverse absorption is much stronger for rel-

atively short loops with small transitional layer. The
anomalous absorption found in Fig. 6 is a common prop-
erty irrespective of L/R0, which is invisible in Fig. 7 due
to the very high inverse absorption. The (inverse) ab-
sorption behaviors in regime III for l/R0 = 0.01 in Fig. 6
and 7 are very similar to those in Fig. 3.

4. CONCLUSIONS AND DISCUSSIONS

We have studied the e↵ects of an intermediate shear
flow region, which has a spatial periodic modulation to
a constant speed, on the propagation of MHD fast wave
into a coronal loop. The wave frequency is fixed to the
fundamental kink mode, thus inducing the kink oscilla-
tion of the coronal loop and relevant resonant absorp-
tion. The presence of sinusoidal periodic variation re-
sults in new Alfvén resonances in the shear flow region,
which induces new flow regime in absorption, regime
III (�V = 1), in addition to regimes I (�V > 1) and
II (�V < 1) that was previously studied in Yu (2021).
The incident wave has mode conversion in the Alfvén
resonance when ⌦ = !Ae (Ue = vk � vAe), which yields
enhanced absorption. On the other hand, the wave inci-
dent on the flow region with ⌦ = �!Ae ( Ue = vk+vAe)
gains energy from the flow via inverse mode conver-
sion. The reflected wave has a giant amplification for
some flow profiles and relatively short coronal loops. An
anomalous absorption feature is found that an absorp-
tion arises in the middle of inverse absorption regime
when the transitional layer is su�ciently thick, and the
periodicity (b) and amplitude of the variation (a) are
su�ciently large.
The strong amplification of reflection (inverse absorp-

tion) for small b may be explained by the cavity-like
resonance and the time-reversal-invariant relationship
introduced by Rivero & Ge (2019), who considered the
wave propagation through an medium with loss or gain.
Using time reversal invariance between two media, they
found that a relationship exists among the reflection and
transmission coe�cients for two media. Their finding
means that high absorption in a medium with loss cor-
responds to high reflection from a medium with gain.
In other words, resonant absorption (overreflection) can
be treated as the wave absorption (amplification) in a
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Figure 6. Similar to Fig. 5 with the variation of a (L/R0 = 100). From the left column, l/R0 = 0.01, 0.7, 1. From top to
bottom, b = 1, 5, 10, 20.
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medium with loss (gain). Kim & Kim (2022) considered
a model that the density linearly varies and the flow
speed is constant in the nonuniform layer and verified
that there exists a relationship between a near-perfect
resonant absorption with a certain flow speed and a gi-
ant overreflection with another flow speed. So, there
must exists a certain flow speed for the high resonant ab-
sorption to obtain a high overrfection (Eq. (57) therein).
A direct application of this argument to our results is
not possible since the absorption coe�cient A is not sim-
ply defined as in Kim & Kim (2022) and the flow shear
in our model has spatial dependence, but we anticipate
that the relevant relationship should exist. When the
density and background flow profiles have simple forms,
the cavity-like resonance can be a mechanism for strong
resonant absorption (e.g., Lee & Kim 1999; Yu et al.
2010) and as a result for the giant overreflection. The
strong inverse absorption for small b and l seems to be
from cavity-like resonance. For the case of large b and
l, interference e↵ect between scattered waves from mul-
tiple resonances has strong influence on the absorption
and inverse absorption.
The influence of periodic flow variation on the reso-

nant absorption in regime I is weak. There is a small
shift of the peak position and small variation of absorp-
tion coe�cient as a increases. The change of the first
(left) absorption peak at U ⇡ 0 is negligibly small com-
pared to the second (right) peak. Its influence on res-
onant absorption in regime II is negative. It generally
reduces the absorption in proportional to a. The peak
position shifts away from the original position with the
increment of a since the regime III extends along with
a.
Although we have considered a cylindrical plasma the

main features of the results may apply to similar sit-
uations in plasma slabs. In a slab model an awkward
assumption of surrounding shear flow for the loop dis-
appears.
As shown in Cśık et al. (1998), Kim & Kim (2022) and

from the results for b = 1, a rather simple configuration
of shear flow and density can induce overreflection. The
inhomogeneity of flow and density (or magnetic field) is
the essential ingredient. Overreflection may be observed
in the lower solar atmosphere, solar wind (beyond the
Alfvénic point), and so on, where the flow shear exceeds
the Alfvén speed (super-Alfvénic) and the phase speed

of the wave. If the cusp resonance is of concern, the
Alfvén speed is replaced with the cusp speed .
In the phtosphere or chromospher, the flare induced

MHD wave may have overrelfection from the sunspot
if there is a inhomogenoeus flow structure inside the
sunspot or between the flare and a sunspot (e.g., Koso-
vichev & Sekii 2007). Another object of interest is the
coronal hole. Zhou et al. (2022) have observed a total re-
flection of flare-driven quasi-periodic extreme ultraviolet
wave train at a coronal boundary. To our view, there
is also a possible observation of overreflection consider-
ing the inhomogeneous structure of outward flows within
the coronal hole (Cranmer 2009; Tian et al. 2011). The
switch-back with field-aligned flows in solar wind is an-
other possible candidate for the observation of over-
reflection since the spatially alternating flow and field
line can have a periodic potential structure similar to the
model considered here (Chen et al. 2021; Neugebauer &
Sterling 2021).
If a resonance line for overreflection and another res-

onance line for resonant absorption reside along a lo-
cal waveguide structure, a strong resonant absorption
and relevant plasma heating is possible. Considering
the property of omnidirectional propagation of the fast
wave, even though there is no waveguide structure, over-
reflected fast wave can contribute to plasma heating via
resonant absorption if the considered plasma structure
is su�ciently complicate. The strong amplification of
wave intensity by overreflection may also enhance the
nonlinear wave-wave interactions in an inhomogeneous
plasma.
Finally, the inclusion of dissipation mechanisms like,

e.g., viscosity may greatly reduce the magnitude of over-
reflection. Despite this restriction, we anticipate su�-
ciently high overreflection is to be observable. The study
for more realistic situation remains for future work.
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